Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 11: 614, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587529

RESUMO

AIMS: Animal models have been used to show that there are critical molecular mechanisms that can be activated to induce myocardial repair at specific times in development. For example, specific miRNAs are critical for regulating the response to myocardial infarction (MI) and improving the response to injury. Manipulating these miRNAs in small animal models provides beneficial effects post-MI; however it is not known if these miRNAs are regulated similarly in large mammals. Studying a large animal where the timing of heart development in relation to birth is similar to humans may provide insights to better understand the capacity to repair a developing mammalian heart and its application to the adult heart. METHODS: We used a sheep model of MI that included permanent ligation of the left anterior descending (LAD) coronary artery. Surgery was performed on fetuses (at 105 days gestation when all cardiomyocytes are mononucleated and proliferative) and adolescent sheep (at 6 months of age when all cardiomyocytes contribute to heart growth by hypertrophy). A microarray was utilized to determine the expression of known miRNAs within the damaged and undamaged tissue regions in fetal and adolescent hearts after MI. RESULTS: 73 miRNAs were up-regulated and 58 miRNAs were down-regulated significantly within the fetal infarct compared to remote cardiac samples. From adolescent hearts 69 non-redundant miRNAs were up-regulated and 63 miRNAs were down-regulated significantly in the infarct area compared to remote samples. Opposite differential expression profiles of 10 miRNAs within tissue regions (Infarct area, Border zone and Remote area of the left ventricle) occurred between the fetuses and adolescent sheep. These included miR-558 and miR-1538, which when suppressed using LNA anti-miRNAs in cell culture, increased cardiomyoblast proliferation. CONCLUSION: There were significant differences in miRNA responses in fetal and adolescent sheep hearts following a MI, suggesting that the modulation of novel miRNA expression may have therapeutic potential, by promoting proliferation or repair in a damaged heart.

2.
Physiol Genomics ; 52(3): 143-159, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961761

RESUMO

There are critical molecular mechanisms that can be activated to induce myocardial repair, and in humans this is most efficient during fetal development. The timing of heart development in relation to birth and the size/electrophysiology of the heart are similar in humans and sheep, providing a model to investigate the repair capacity of the mammalian heart and how this can be applied to adult heart repair. Myocardial infarction was induced by ligation of the left anterior descending coronary artery in fetal (105 days gestation when cardiomyocytes are proliferative) and adolescent sheep (6 mo of age when all cardiomyocytes have switched to an adult phenotype). An ovine gene microarray was used to compare gene expression in sham and infarcted (remote, border and infarct areas) cardiac tissue from fetal and adolescent hearts. The gene response to myocardial infarction was less pronounced in fetal compared with adolescent sheep hearts and there were unique gene responses at each age. There were also region-specific changes in gene expression between each age, in the infarct tissue, tissue bordering the infarct, and tissue remote from the infarction. In total, there were 880 genes that responded to MI uniquely in the adolescent samples compared with 170 genes in the fetal response, as well as 742 overlap genes that showed concordant direction of change responses to infarction at both ages. In response to myocardial infarction, there were specific changes in genes within pathways of mitochondrial oxidation, muscle contraction, and hematopoietic cell lineages, suggesting that the control of energy utilization and immune function are critical for effective heart repair. The more restricted gene response in the fetus may be an important factor in its enhanced capacity for cardiac repair.


Assuntos
Coração Fetal/fisiopatologia , Infarto do Miocárdio/genética , Regeneração/genética , Transcriptoma , Fatores Etários , Animais , Modelos Animais de Doenças , Regulação para Baixo/genética , Feminino , Perfilação da Expressão Gênica , Masculino , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Ovinos , Análise Serial de Tecidos/métodos , Regulação para Cima/genética
3.
Front Physiol ; 10: 208, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30890961

RESUMO

Aim: Characterizing the response to myocardial infarction (MI) in the regenerative sheep fetus heart compared to the post-natal non-regenerative adolescent heart may reveal key morphological and molecular differences that equate to the response to MI in humans. We hypothesized that the immediate response to injury in (a) infarct compared with sham, and (b) infarct, border, and remote tissue, in the fetal sheep heart would be fundamentally different to the adolescent, allowing for repair after damage. Methods: We used a sheep model of MI induced by ligating the left anterior descending coronary artery. Surgery was performed on fetuses (105 days) and adolescent sheep (6 months). Sheep were randomly separated into MI (n = 5) or Sham (n = 5) surgery groups at both ages. We used magnetic resonance imaging (MRI), histological/immunohistochemical staining, and qRT-PCR to assess the morphological and molecular differences between the different age groups in response to infarction. Results: Magnetic resonance imaging showed no difference in fetuses for key functional parameters; however there was a significant decrease in left ventricular ejection fraction and cardiac output in the adolescent sheep heart at 3 days post-infarction. There was no significant difference in functional parameters between MRI sessions at Day 0 and Day 3 after surgery. Expression of genes involved in glucose transport and fatty acid metabolism, inflammatory cytokines as well as growth factors and cell cycle regulators remained largely unchanged in the infarcted compared to sham ventricular tissue in the fetus, but were significantly dysregulated in the adolescent sheep. Different cardiac tissue region-specific gene expression profiles were observed between the fetal and adolescent sheep. Conclusion: Fetuses demonstrated a resistance to cardiac damage not observed in the adolescent animals. The manipulation of specific gene expression profiles to a fetal-like state may provide a therapeutic strategy to treat patients following an infarction.

4.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1123-R1153, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30325659

RESUMO

Experimental studies that are relevant to human pregnancy rely on the selection of appropriate animal models as an important element in experimental design. Consideration of the strengths and weaknesses of any animal model of human disease is fundamental to effective and meaningful translation of preclinical research. Studies in sheep have made significant contributions to our understanding of the normal and abnormal development of the fetus. As a model of human pregnancy, studies in sheep have enabled scientists and clinicians to answer questions about the etiology and treatment of poor maternal, placental, and fetal health and to provide an evidence base for translation of interventions to the clinic. The aim of this review is to highlight the advances in perinatal human medicine that have been achieved following translation of research using the pregnant sheep and fetus.


Assuntos
Feto/metabolismo , Placenta/metabolismo , Resultado da Gravidez , Ovinos/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Troca Materno-Fetal/fisiologia , Gravidez , Prenhez
5.
J Physiol ; 596(23): 5625-5640, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29785790

RESUMO

Myocardial infarction is a primary contributor towards the global burden of cardiovascular disease. Rather than repairing the existing damage of myocardial infarction, current treatments only address the symptoms of the disease and reducing the risk of a secondary infarction. Cardiac regenerative capacity is dependent on cardiomyocyte proliferation, which concludes soon after birth in humans and precocial species such as sheep. Human fetal cardiac tissue has some ability to repair following tissue damage, whereas a fully matured human heart has minimal capacity for cellular regeneration. This is in contrast to neonatal mice and adult zebrafish hearts, which retain the ability to undergo cardiomyocyte proliferation and can regenerate cardiac tissue after birth. In mice and zebrafish models, microRNAs (miRNAs) have been implicated in the regulation of genes involved in cardiac cell cycle progression and regeneration. However, the significance of miRNA regulation in cardiomyocyte proliferation for humans and other large mammals, where the timing of heart development in relation to birth is similar, remains unclear. miRNAs may be valuable targets for therapies that promote cardiac repair after injury. Therefore, elucidating the role of specific miRNAs in large animals, where heart development closely resembles that of humans, remains vitally important for identifying therapeutic targets that may be translated into clinical practice focused on tissue repair.


Assuntos
Coração/fisiologia , MicroRNAs , Miócitos Cardíacos/fisiologia , Animais , Proliferação de Células , Feto/fisiologia , Cardiopatias , Humanos , Regeneração , Risco
6.
Gigascience ; 7(3): 1-17, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29618048

RESUMO

Genome sequences for hundreds of mammalian species are available, but an understanding of their genomic regulatory regions, which control gene expression, is only beginning. A comprehensive prediction of potential active regulatory regions is necessary to functionally study the roles of the majority of genomic variants in evolution, domestication, and animal production. We developed a computational method to predict regulatory DNA sequences (promoters, enhancers, and transcription factor binding sites) in production animals (cows and pigs) and extended its broad applicability to other mammals. The method utilizes human regulatory features identified from thousands of tissues, cell lines, and experimental assays to find homologous regions that are conserved in sequences and genome organization and are enriched for regulatory elements in the genome sequences of other mammalian species. Importantly, we developed a filtering strategy, including a machine learning classification method, to utilize a very small number of species-specific experimental datasets available to select for the likely active regulatory regions. The method finds the optimal combination of sensitivity and accuracy to unbiasedly predict regulatory regions in mammalian species. Furthermore, we demonstrated the utility of the predicted regulatory datasets in cattle for prioritizing variants associated with multiple production and climate change adaptation traits and identifying potential genome editing targets.


Assuntos
Genoma/genética , Genômica , Transcriptoma/genética , Animais , Bovinos , Mapeamento Cromossômico , Biologia Computacional , Humanos , Mamíferos , Regiões Promotoras Genéticas , Especificidade da Espécie , Suínos/genética
7.
BMC Genomics ; 19(1): 283, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29690867

RESUMO

BACKGROUND: In food animal agriculture, there is a need to identify the mechanisms that can improve the efficiency of muscle growth and protein accretion. Callipyge sheep provide excellent machinery since the up-regulation of DLK1 and RTL1 results in extreme postnatal muscle hypertrophy in distinct muscles. The aim of this study is to distinguish the genes that directly respond to DLK1 and RTL1 signaling from the genes that change as the result of muscle specific effects. RESULTS: The quantitative PCR results indicated that DLK1 expression was significantly increased in hypertrophied muscles but not in non-hypertrophied muscles. However, RTL1 was up-regulated in both hypertrophied and non-hypertrophied muscles. Five genes, including PARK7, DNTTIP1, SLC22A3, METTL21E and PDE4D, were consistently co-expressed with DLK1, and therefore were possible transcriptional target genes responding to DLK1 signaling. Treatment of myoblast and myotubes with DLK1 protein induced an average of 1.6-fold and 1.4-fold increase in Dnttip1 and Pde4d expression respectively. Myh4 expression was significantly elevated in DLK1-treated myotubes, whereas the expression of Mettl21e was significantly increased in the DLK1-treated myoblasts but reduced in DLK1-treated myotubes. DLK1 treatment had no impact on Park7 expression. In addition, Park7 and Dnttip1 increased Myh4 and decreased Myh7 promoter activity, resemble to the effects of Dlk1. In contrast, expression of Mettl21e increased Myh7 and decreased Myh4 luciferase activity. CONCLUSION: The study provided additional supports that RTL1 alone was insufficient to induce muscle hypertrophy and concluded that DLK1 was likely the primary effector of the hypertrophy phenotype. The results also suggested that DNTTIP1 and PDE4D were secondary effector genes responding to DLK1 signaling resulting in muscle fiber switch and muscular hypertrophy in callipyge lamb.


Assuntos
Proteínas de Membrana/genética , Animais , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Hipertrofia , Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Ovinos/genética , Transdução de Sinais/genética , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
8.
Nat Commun ; 9(1): 859, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491421

RESUMO

Domestication fundamentally reshaped animal morphology, physiology and behaviour, offering the opportunity to investigate the molecular processes driving evolutionary change. Here we assess sheep domestication and artificial selection by comparing genome sequence from 43 modern breeds (Ovis aries) and their Asian mouflon ancestor (O. orientalis) to identify selection sweeps. Next, we provide a comparative functional annotation of the sheep genome, validated using experimental ChIP-Seq of sheep tissue. Using these annotations, we evaluate the impact of selection and domestication on regulatory sequences and find that sweeps are significantly enriched for protein coding genes, proximal regulatory elements of genes and genome features associated with active transcription. Finally, we find individual sites displaying strong allele frequency divergence are enriched for the same regulatory features. Our data demonstrate that remodelling of gene expression is likely to have been one of the evolutionary forces that drove phenotypic diversification of this common livestock species.


Assuntos
Evolução Molecular , Genoma , Elementos Reguladores de Transcrição , Ovinos/genética , Animais , Cruzamento , Feminino , Frequência do Gene , Masculino , Anotação de Sequência Molecular , Filogenia , Ovinos/classificação
9.
Int J Mol Sci ; 18(12)2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29210999

RESUMO

Placental insufficiency, high altitude pregnancies, maternal obesity/diabetes, maternal undernutrition and stress can result in a poor setting for growth of the developing fetus. These adverse intrauterine environments result in physiological changes to the developing heart that impact how the heart will function in postnatal life. The intrauterine environment plays a key role in the complex interplay between genes and the epigenetic mechanisms that regulate their expression. In this review we describe how an adverse intrauterine environment can influence the expression of miRNAs (a sub-set of non-coding RNAs) and how these changes may impact heart development. Potential consequences of altered miRNA expression in the fetal heart include; Hypoxia inducible factor (HIF) activation, dysregulation of angiogenesis, mitochondrial abnormalities and altered glucose and fatty acid transport/metabolism. It is important to understand how miRNAs are altered in these adverse environments to identify key pathways that can be targeted using miRNA mimics or inhibitors to condition an improved developmental response.


Assuntos
Meio Ambiente , Epigênese Genética , Coração Fetal/metabolismo , MicroRNAs/genética , Estresse Fisiológico , Aclimatação , Animais , Coração Fetal/embriologia , Coração Fetal/fisiologia , Humanos , MicroRNAs/metabolismo
10.
PLoS One ; 12(6): e0180378, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28665992

RESUMO

Heritable trait variation within a population of organisms is largely governed by DNA variations that impact gene transcription and protein function. Identifying genetic variants that affect complex functional traits is a primary aim of population genetics studies, especially in the context of human disease and agricultural production traits. The identification of alleles directly altering mRNA expression and thereby biological function is challenging due to difficulty in isolating direct effects of cis-acting genetic variations from indirect trans-acting genetic effects. Allele specific gene expression or allelic imbalance in gene expression (AI) occurring at heterozygous loci provides an opportunity to identify genes directly impacted by cis-acting genetic variants as indirect trans-acting effects equally impact the expression of both alleles. However, the identification of genes showing AI in the context of the expression of all genes remains a challenge due to a variety of technical and statistical issues. The current study focuses on the discovery of genes showing AI using single nucleotide polymorphisms as allelic reporters. By developing a computational and statistical process that addressed multiple analytical challenges, we ranked 5,809 genes for evidence of AI using RNA-Seq data derived from brown adipose tissue samples from a cohort of late gestation fetal lambs and then identified a conservative subgroup of 1,293 genes. Thus, AI was extensive, representing approximately 25% of the tested genes. Genes associated with AI were enriched for multiple Gene Ontology (GO) terms relating to lipid metabolism, mitochondrial function and the extracellular matrix. These functions suggest that cis-acting genetic variations causing AI in the population are preferentially impacting genes involved in energy homeostasis and tissue remodelling. These functions may contribute to production traits likely to be under genetic selection in the population.


Assuntos
Tecido Adiposo Marrom/metabolismo , Desequilíbrio Alélico , Homeostase , Animais , Feminino , Humanos , Polimorfismo de Nucleotídeo Único , Gravidez , Ovinos
11.
Mutagenesis ; 31(4): 409-16, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26758645

RESUMO

G-quadruplexes (G4) are highly stable tetra-stranded DNA secondary structures known to mediate gene regulation and to trigger genomic instability events during replication. G4 structural stability can be affected by DNA methylation and oxidation modifications; thus nutrients such as folate that have the ability to alter these processes could potentially modify the genomic occurrence of G4 elements. Hela cells were cultured in a range of folate concentrations or in the presence or absence of 5-aza-2'-deoxycytidine, a DNA-methyltransferase inhibitor. G4 structures were then quantified by immunofluorescence using an automated quantitative imaging system. G4 frequency in Hela cells and nuclei area mean were increased in 20nM folate medium compared with 2000nM folate, as well as in the presence of 5-aza-2'-deoxycytidine when compared to cells non-exposed to 5-aza-2'-deoxycytidine. These changes were exacerbated when pyridostatin, a G4 stabilising ligand, was added to the culture medium. G4 intensity in Hela cells cultured in deficient folate condition with pyridostatin was highly correlated with DNA damage as measured by γH2AX immunofluorescence (r = 0.71). This study showed for the first time that cellular G4 balance is modifiable by low folate concentrations and that these changes may occur as a consequence of DNA hypomethylation. Although the exact mechanism by which these changes occur is unclear, these findings establish the possibility that nutrients could be utilised as a tool for sustaining genome integrity by modifying G4 frequency at a cellular level.


Assuntos
Metilases de Modificação do DNA/antagonistas & inibidores , DNA/metabolismo , Deficiência de Ácido Fólico/complicações , Quadruplex G , Azacitidina/análogos & derivados , Azacitidina/farmacologia , DNA/química , Metilases de Modificação do DNA/metabolismo , Decitabina , Células HeLa , Humanos
12.
BMC Genomics ; 16: 626, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26343138

RESUMO

Data availability expectations have changed over the years in scientific publishing, nowhere more so than in the field of genomics. This field has spearheaded openness and transparency via public and structured deposition of data. BMC Genomics strongly encourages deposition and unrestricted availability of all primary data underlying research studies both as a way of ensuring reproducibility and standardisation, but also as part of overall community-driven expectation on data deposition and sharing. With funders and publishers moving towards more explicit mandates (regarding data availability), we examined the current barriers to unrestricted availability of data and explored different scenarios in which commercial agreements might run contrary to scientific convention and data sharing policies. In this editorial, Ross Tellam (CSIRO, Australia), Paul Rushton (Texas A&M AgriLife Research) and Peter Schuerman (University of California, Merced), give their views on the importance of data sharing and examine the current challenges in research fields like crop and livestock genomics, where often it is necessary to integrate the interests of academic and commercial stakeholders. We discuss the current approaches, highlight the importance of community-driven standards, and propose ways forward.


Assuntos
Disseminação de Informação , Financiamento de Capital/economia , Financiamento de Capital/organização & administração , Bases de Dados Factuais , Humanos , Disseminação de Informação/legislação & jurisprudência , Disseminação de Informação/métodos , Privacidade
13.
Genet Sel Evol ; 47: 66, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26272623

RESUMO

BACKGROUND: Body weight (BW) is an important trait for meat production in sheep. Although over the past few years, numerous quantitative trait loci (QTL) have been detected for production traits in cattle, few QTL studies have been reported for sheep, with even fewer on meat production traits. Our objective was to perform a genome-wide association study (GWAS) with the medium-density Illumina Ovine SNP50 BeadChip to identify genomic regions and corresponding haplotypes associated with BW in Australian Merino sheep. METHODS: A total of 1781 Australian Merino sheep were genotyped using the medium-density Illumina Ovine SNP50 BeadChip. Among the 53 862 single nucleotide polymorphisms (SNPs) on this array, 48 640 were used to perform a GWAS using a linear mixed model approach. Genotypes were phased with hsphase; to estimate SNP haplotype effects, linkage disequilibrium blocks were identified in the detected QTL region. RESULTS: Thirty-nine SNPs were associated with BW at a Bonferroni-corrected genome-wide significance threshold of 1 %. One region on sheep (Ovis aries) chromosome 6 (OAR6) between 36.15 and 38.56 Mb, included 13 significant SNPs that were associated with BW; the most significant SNP was OAR6_41936490.1 (P = 2.37 × 10(-16)) at 37.69 Mb with an allele substitution effect of 2.12 kg, which corresponds to 0.248 phenotypic standard deviations for BW. The region that surrounds this association signal on OAR6 contains three genes: leucine aminopeptidase 3 (LAP3), which is involved in the processing of the oxytocin precursor; NCAPG non-SMC condensin I complex, subunit G (NCAPG), which is associated with foetal growth and carcass size in cattle; and ligand dependent nuclear receptor corepressor-like (LCORL), which is associated with height in humans and cattle. CONCLUSIONS: The GWAS analysis detected 39 SNPs associated with BW in sheep and a major QTL region was identified on OAR6. In several other mammalian species, regions that are syntenic with this region have been found to be associated with body size traits, which may reflect that the underlying biological mechanisms share a common ancestry. These findings should facilitate the discovery of causative variants for BW and contribute to marker-assisted selection.


Assuntos
Peso Corporal/genética , Bovinos/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Ovinos/anatomia & histologia , Animais , Sequência de Bases , Biometria , Bovinos/anatomia & histologia , Sequência Conservada , Haplótipos , Humanos , Modelos Lineares , Locos de Características Quantitativas , Ovinos/genética
14.
BMC Genomics ; 16: 541, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26198574

RESUMO

BACKGROUND: There is a limited capacity to repair damage in the mammalian heart after birth, which is primarily due to the inability of cardiomyocytes to proliferate after birth. This is in contrast to zebrafish and salamander, in which cardiomyocytes retain the ability to proliferate throughout life and can regenerate their heart after significant damage. Recent studies in zebrafish and rodents implicate microRNA (miRNA) in the regulation of genes responsible for cardiac cell cycle progression and regeneration, in particular, miR-133a, the miR-15 family, miR-199a and miR-590. However, the significance of these miRNA and miRNA in general in the regulation of cardiomyocyte proliferation in large mammals, including humans, where the timing of heart development relative to birth is very different than in rodents, is unclear. To determine the involvement of miRNA in the down-regulation of cardiomyocyte proliferation occurring before birth in large mammals, we investigated miRNA and target gene expression in sheep hearts before and after birth. The experimental approach included targeted transcriptional profiling of miRNA and target mRNA previously identified in rodent studies as well as genome-wide miRNA profiling using microarrays. RESULTS: The cardiac expression of miR-133a increased and its target gene IGF1R decreased with increasing age, reaching their respective maximum and minimum abundance when the majority of ovine cardiomyocytes were quiescent. The expression of the miR-15 family members was variable with age, however, four of their target genes decreased with age. These latter profiles are inconsistent with the direct involvement of this family of miRNA in cardiomyocyte quiescence in late gestation sheep. The expression patterns of 'pro-proliferative' miR-199a and miR-590 were also inconsistent with their involvement in cardiomyocyte quiescence. Consequently, miRNA microarray analysis was undertaken, which identified six discrete clusters of miRNA with characteristic developmental profiles. The functions of predicted target genes for the miRNA in four of the six clusters were enriched for aspects of cell division and regulation of cell proliferation suggesting a potential role of these miRNA in regulating cardiomyocyte proliferation. CONCLUSION: The results of this study show that the expression of miR-133a and one of its target genes is consistent with it being involved in the suppression of cardiomyocyte proliferation, which occurs across the last third of gestation in sheep. The expression patterns of the miR-15 family, miR-199a and miR-590 were inconsistent with direct involvement in the regulation cardiomyocyte proliferation in sheep, despite studies in rodents demonstrating that their manipulation can influence the degree of cardiomyocyte proliferation. miRNA microarray analysis suggests a coordinated and potentially more complex role of multiple miRNA in the regulation of cardiomyocyte quiescence and highlights significant differences between species that may reflect their substantial differences in the timing of this developmental process.


Assuntos
Coração/crescimento & desenvolvimento , MicroRNAs/genética , Miócitos Cardíacos/fisiologia , Ovinos/genética , Animais , Proliferação de Células/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , MicroRNAs/biossíntese , Análise em Microsséries , RNA Mensageiro/genética , Ovinos/crescimento & desenvolvimento
15.
Mutat Res Rev Mutat Res ; 764: 101-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26041269

RESUMO

G-quadruplexes (G4) are highly stable tetra-stranded secondary DNA structures known to mediate gene regulation. These structures are resolved by DNA helicases and are believed to be a causal factor in the phenotype of premature ageing disorders following mutations in DNA helicase genes. The relevance of G4 structures in ageing may be further implicated by their dynamic relationship with DNA modification mechanisms. When DNA methylation and oxidation occur at the vicinity of G4 elements, they can affect the stability of G4 structures which may in turn mediate gene expression resulting in deleterious effects on genome integrity. Therefore, the influence of nutritional deficiencies or excess on oxidation and methylation mechanisms may be contributing factors affecting the stability of G4 structures and their balance in the human genome. We propose that dietary nutrients such as folate and antioxidants may play a beneficial role in reducing G4-induced DNA damage through changes in G4 structure stability. The current knowledge advocates the importance of resolving G4 structures by DNA helicases for sustained genome integrity, and the existence of stability changes in G4 structures when associated with DNA methylation and oxidation modifications.


Assuntos
Envelhecimento/genética , DNA/química , Quadruplex G , DNA Helicases/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Estresse Oxidativo
17.
Clin Epigenetics ; 7: 66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27408648

RESUMO

The increased prevalence of obesity and related comorbidities is a major public health problem. While genetic factors undoubtedly play a role in determining individual susceptibility to weight gain and obesity, the identified genetic variants only explain part of the variation. This has led to growing interest in understanding the potential role of epigenetics as a mediator of gene-environment interactions underlying the development of obesity and its associated comorbidities. Initial evidence in support of a role of epigenetics in obesity and type 2 diabetes mellitus (T2DM) was mainly provided by animal studies, which reported epigenetic changes in key metabolically important tissues following high-fat feeding and epigenetic differences between lean and obese animals and by human studies which showed epigenetic changes in obesity and T2DM candidate genes in obese/diabetic individuals. More recently, advances in epigenetic methodologies and the reduced cost of epigenome-wide association studies (EWAS) have led to a rapid expansion of studies in human populations. These studies have also reported epigenetic differences between obese/T2DM adults and healthy controls and epigenetic changes in association with nutritional, weight loss, and exercise interventions. There is also increasing evidence from both human and animal studies that the relationship between perinatal nutritional exposures and later risk of obesity and T2DM may be mediated by epigenetic changes in the offspring. The aim of this review is to summarize the most recent developments in this rapidly moving field, with a particular focus on human EWAS and studies investigating the impact of nutritional and lifestyle factors (both pre- and postnatal) on the epigenome and their relationship to metabolic health outcomes. The difficulties in distinguishing consequence from causality in these studies and the critical role of animal models for testing causal relationships and providing insight into underlying mechanisms are also addressed. In summary, the area of epigenetics and metabolic health has seen rapid developments in a short space of time. While the outcomes to date are promising, studies are ongoing, and the next decade promises to be a time of productive research into the complex interactions between the genome, epigenome, and environment as they relate to metabolic disease.


Assuntos
Epigenômica , Doenças Metabólicas/genética , Obesidade/genética , Adolescente , Animais , Criança , Pré-Escolar , Comorbidade , Metilação de DNA/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Exposição Ambiental , Feminino , Interação Gene-Ambiente , Genoma , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Estilo de Vida , Masculino , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/fisiopatologia , Camundongos , Modelos Animais , Fenômenos Fisiológicos da Nutrição/genética , Obesidade/epidemiologia , Obesidade/fisiopatologia , Gravidez , Complicações na Gravidez , Prevalência , Aumento de Peso/genética
18.
PLoS Pathog ; 10(10): e1004423, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25299404

RESUMO

Recent studies have shown that virally encoded mRNA sequences of genome maintenance proteins from herpesviruses contain clusters of unusual structural elements, G-quadruplexes, which modulate viral protein synthesis. Destabilization of these G-quadruplexes can override the inhibitory effect on self-synthesis of these proteins. Here we show that the purine-rich repetitive mRNA sequence of Epstein-Barr virus encoded nuclear antigen 1 (EBNA1) comprising G-quadruplex structures, limits both the presentation of MHC class I-restricted CD8(+) T cell epitopes by CD11c(+) dendritic cells in draining lymph nodes and early priming of antigen-specific CD8(+) T-cells. Destabilization of the G-quadruplex structures through codon-modification significantly enhanced in vivo antigen presentation and activation of virus-specific T cells. Ex vivo imaging of draining lymph nodes by confocal microscopy revealed enhanced antigen-specific T-cell trafficking and APC-CD8(+) T-cell interactions in mice primed with viral vectors encoding a codon-modified EBNA1 protein. More importantly, these antigen-specific T cells displayed enhanced expression of the T-box transcription factor and superior polyfunctionality consistent with the qualitative impact of translation efficiency. These results provide an important insight into how viruses exploit mRNA structure to down regulate synthesis of their viral maintenance proteins and delay priming of antigen-specific T cells, thereby establishing a successful latent infection in vivo. Furthermore, targeting EBNA1 mRNA rather than protein by small molecules or antisense oligonucleotides will enhance EBNA1 synthesis and the early priming of effector T cells, to establish a more rapid immune response and prevent persistent infection.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , RNA Mensageiro/genética , Animais , Antígeno CD11c/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Genes MHC Classe I/imunologia , Camundongos Endogâmicos C57BL , Biossíntese de Proteínas/genética
19.
Calcif Tissue Int ; 95(4): 308-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25055749

RESUMO

Sarcopenia is associated with adverse health outcomes. This study investigated whether skeletal muscle gene expression was associated with lean mass and grip strength in community-dwelling older men. Utilising a cross-sectional study design, lean muscle mass and grip strength were measured in 88 men aged 68-76 years. Expression profiles of 44 genes implicated in the cellular regulation of skeletal muscle were determined. Serum was analysed for circulating cytokines TNF (tumour necrosis factor), IL-6 (interleukin 6, IFNG (interferon gamma), IL1R1 (interleukin-1 receptor-1). Relationships between skeletal muscle gene expression, circulating cytokines, lean mass and grip strength were examined. Participant groups with higher and lower values of lean muscle mass (n = 18) and strength (n = 20) were used in the analysis of gene expression fold change. Expression of VDR (vitamin D receptor) [fold change (FC) 0.52, standard error for fold change (SE) ± 0.08, p = 0.01] and IFNG mRNA (FC 0.31; SE ± 0.19, p = 0.01) were lower in those with higher lean mass. Expression of IL-6 (FC 0.43; SE ± 0.13, p = 0.02), TNF (FC 0.52; SE ± 0.10, p = 0.02), IL1R1 (FC 0.63; SE ± 0.09, p = 0.04) and MSTN (myostatin) (FC 0.64; SE ± 0.11, p = 0.04) were lower in those with higher grip strength. No other significant changes were observed. Significant negative correlations between serum IL-6 (R = -0.29, p = 0.005), TNF (R = -0.24, p = 0.017) and grip strength were demonstrated. This novel skeletal muscle gene expression study carried out within a well-characterized epidemiological birth cohort has demonstrated that lower expression of VDR and IFNG is associated with higher lean mass, and lower expression of IL-6, TNF, IL1R1 and myostatin is associated with higher grip strength. These findings are consistent with a role of proinflammatory factors in mediating lower muscle strength in community-dwelling older men.


Assuntos
Regulação da Expressão Gênica , Sarcopenia/patologia , Idoso , Antropometria , Biópsia , Composição Corporal , Estudos de Coortes , Estudos Transversais , Inglaterra , Perfilação da Expressão Gênica , Humanos , Interferon gama/metabolismo , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Força Muscular , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Reação em Cadeia da Polimerase , Receptores Tipo I de Interleucina-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
PLoS One ; 9(6): e99726, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24937646

RESUMO

The ovine Callipyge mutation causes postnatal muscle hypertrophy localized to the pelvic limbs and torso, as well as body leanness. The mechanism underpinning enhanced muscle mass is unclear, as is the systemic impact of the mutation. Using muscle fibre typing immunohistochemistry, we confirmed muscle specific effects and demonstrated that affected muscles had greater prevalence and hypertrophy of type 2X fast twitch glycolytic fibres and decreased representation of types 1, 2C, 2A and/or 2AX fibres. To investigate potential systemic effects of the mutation, proton NMR spectra of plasma taken from lambs at 8 and 12 weeks of age were measured. Multivariate statistical analysis of plasma metabolite profiles demonstrated effects of development and genotype but not gender. Plasma from Callipyge lambs at 12 weeks of age, but not 8 weeks, was characterized by a metabolic profile consistent with contributions from the affected hypertrophic fast twitch glycolytic muscle fibres. Microarray analysis of the perirenal adipose tissue depot did not reveal a transcriptional effect of the mutation in this tissue. We conclude that there is an indirect systemic effect of the Callipyge mutation in skeletal muscle in the form of changes of blood metabolites, which may contribute to secondary phenotypes such as body leanness.


Assuntos
Adiposidade/genética , Doenças Musculares/veterinária , Carneiro Doméstico/genética , Ovinos/genética , Tecido Adiposo/metabolismo , Animais , Biomarcadores/sangue , DNA Intergênico , Estudos de Associação Genética , Hipertrofia/sangue , Hipertrofia/genética , Hipertrofia/veterinária , Laminina/metabolismo , Redes e Vias Metabólicas , Metaboloma , Análise Multivariada , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Músculo Esquelético/patologia , Doenças Musculares/sangue , Doenças Musculares/genética , Mutação , Cadeias Pesadas de Miosina/metabolismo , Fenótipo , Doenças dos Ovinos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...